KRAS Gene Mutation Test

GTPase KRas also known as V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog and KRAS, is a protein that in humans is encoded by the KRAS gene. The protein product of the normal KRAS gene performs an essential function in normal tissue signaling, and the mutation of a KRAS gene is an essential step in the development of many cancers. Like other members of the Ras family, the KRAS protein is a GTPase and is an early player in many signal transduction pathways. KRAS is usually tethered to cell membranes because of the presence of an isoprenyl group on its C-terminus.

Clinical significance

This proto-oncogene is a Kirsten ras oncogene homolog from the mammalian ras gene family. A single amino acid substitution, and in particular a single nucleotide substitution, is responsible for an activating mutation. The transforming protein that results is implicated in various malignancies, including lung adenocarcinoma, mucinous adenoma, ductal carcinoma of the pancreas and colorectal carcinoma. Several germline KRAS mutations have been found to be associated with Noonan syndrome and cardio-facio-cutaneous syndrome. Somatic KRAS mutations are found at high rates in leukemias, colon cancer, pancreatic cancer and lung cancer.

Colorectal cancer

The chronological order of mutations is important in the impact of KRAS mutations in regard to colorectal cancer, with a primary KRAS mutation generally leading to a self-limiting hyperplastic or borderline lesion, but if occurring after a previous APC mutation it often progresses to cancer. KRAS mutations are more commonly observed in cecal cancers than colorectal cancers located in any other places from ascending colon to rectum. KRAS mutation is predictive of a very poor response to panitumumab (Vectibix®) and cetuximab (Erbitux®) therapy in colorectal cancer. Currently, the most reliable way to predict whether a colorectal cancer patient will respond to one of the EGFR-inhibiting drugs is to test for certain “activating” mutations in the gene that encodes KRAS, which occurs in 30%-50% of colorectal cancers. Studies show patients whose tumors express the mutated version of the KRAS gene will not respond to cetuximab or panitumumab. Although presence of the wild-type (or normal) KRAS gene does not guarantee that these drugs will work, a number of large studies have shown that cetuximab has significant efficacy in mCRC patients with KRAS wild-type tumors. In the Phase III CRYSTAL study, published in 2009, patients with the wild-type KRAS gene treated with Erbitux plus chemotherapy showed a response rate of up to 59% compared to those treated with chemotherapy alone. Patients with the KRAS wild-type gene also showed a 32% decreased risk of disease progression compared to patients receiving chemotherapy alone. Emergence of KRAS mutations is a frequent driver of acquired resistance to cetuximab anti-EGFR therapy in colorectal cancers. The emergence of KRAS mutant clones can be detected non-invasively months before radiographic progression. It suggests to perform an early initiation of a MEK inhibitor as a rational strategy for delaying or reversing drug resistance.

KRas amplification

KRAS gene can also be amplified in colorectal cancer. KRAS amplification is mutually exclusive with KRAS mutations. Tumors or cell lines harboring this genetic lesion are not responsive to anti-EGFR inhibitors. Although KRAS amplification is an infrequent event in colorectal cancer, it might be responsible for precluding response to anti-EGFR treatment in some patients. Amplification of wild-type Kras has also been observed in ovarian, gastric, uterine, and lung cancers. Lung cancer Whether a patient is positive or negative for a mutation in the epidermal growth factor receptor (EGFR) will predict how patients will respond to certain EGFR antagonists such as erlotinib (Tarceva) or gefitinib (Iressa). Patients who harbor an EGFR mutation have a 60% response rate to erlotinib. However, the mutation of KRAS and EGFR are generally mutually exclusive. Lung cancer patients who are positive for KRAS mutation (and the EGFR status would be wild type) have a low response rate to erlotinib or gefitinib estimated at 5% or less.